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Abstract: Quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) 
models have been extensively used for predicting compounds of specific pharmacodynamic, pharmacokinetic, or toxico-
logical property from structure-derived physicochemical and structural features. These models can be developed by using 
various regression methods including conventional approaches (multiple linear regression and partial least squares) and 
more recently explored genetic (genetic function approximation) and machine learning (k-nearest neighbour, neural net-
works, and support vector regression) approaches. This article describes the algorithms of these methods, evaluates their 
advantages and disadvantages, and discusses the application potential of the recently explored methods. Freely available 
online and commercial software for these regression methods and the areas of their applications are also presented. 
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INTRODUCTION 

 As part of the effort for accelerating and reducing the 
cost of drug discovery processes, computational methods 
have been explored for predicting compounds that possess 
such pharmaceutically-relevant properties as a specific phar-
macodynamic, pharmacokinetic or toxicological property [1-
4]. In particular, quantitative structure activity relationship 
(QSAR) and quantitative structure-property relationship 
(QSPR) models has been instrumental for facilitating the 
prediction of biological and pharmaceutically-relevant activi-
ties of drug candidates. QSAR/QSPR is a method to model 
and predict the biological or pharmaceutically-relevant activ-
ity of a compound from a selected set of structure-derived 
physicochemical and structural features by using a statisti-
cally derived mathematical equation [5]. It is based on a 
similarity principle which assumes that compounds with 
similar physicochemical properties or structural frameworks 
tend to exhibit similar biological and pharmaceutically-
relevant activities.  

 The process of developing a QSAR/QSPR model starts 
with the collection of high quality activity data and the 
elimination of low quality ones that are likely to affect the 
accuracy of the model. The next step is the selection of rep-
resentative compounds into a training set and a validation set 
to calibrate and evaluate the QSAR/QSPR model respec-
tively. Molecular descriptors are then computed for repre- 
senting the physicochemical and structural properties of the 
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compounds studied and those that are redundant or contain 
little information are removed prior to the modelling process. 
A regression method, such as multiple linear regression and 
neural networks, is then used to develop a model that relates 
the investigated activities of the compounds to their physico-
chemical and structural properties. During the modelling 
process, optimization of the essential parameters of the re-
gression methods and the selection of relevant descriptor 
subsets are conducted simultaneously. The optimal set of 
parameters and descriptor subset are used to construct a final 
QSAR/QSPR model, which is subsequently subjected to 
evaluation by one or more of the various validation methods 
to ensure that the constructed model is valid and useful. 

 This article describes the algorithms, advantages, disad-
vantages and application potential of various regression 
methods that are commonly used for developing QSAR/QSPR 
models of specific pharmacodynamic, pharmacokinetic or 
toxicological property. It is to be noted that the selection of 
the algorithms and their descriptions are neither exhaustive 
nor comprehensive because of the limitation of a mini review 
and the reader is requested to refer to other resources for 
more detailed descriptions of the algorithms. The process of 
data collection, data pre-processing, computation and selec-
tion of molecular descriptors, and model validation have 
been extensively reviewed elsewhere [6-15] and they are 
thus not described here. Freely available online software and 
commercial software available for these regression methods 
are also discussed. 

MOLECULAR DESCRIPTORS FOR REPRESENTING 
COMPOUNDS 

 Molecular descriptors are used for representing physico-
chemical and structural properties of compounds from their 
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1D, 2D or 3D structure. The most popularly used computer 
programs for deriving molecular descriptors are CoMFA 
[16], DRAGON [17], GRID [18], HyperChem [19], JOELib 
[20], MOE [21], Molconn-Z [22], VolSurf [23] and Xue de-
scriptor set [24]. Web-servers such as MODEL (http://jing. 
cz3.nus.edu.sg/cgi-bin/model/model.cgi) have also emerged 
for facilitating the computation of molecular descriptors. 
Over 3,000 molecular descriptors can be derived from these 
programs, which range from constitutional descriptors to 
more complex 2D and 3D descriptors representing different 
geometric, connectivity, and physicochemical properties.  

 The commonly used descriptors can be divided into 18 
classes. These include constitutional descriptors such as mo-
lecular weight, geometrical descriptors such as volume and 
surface areas, topological descriptors such as the number of 
rings and rotatable bonds, RDF descriptors representing in-
ter-atomic distances in the entire molecule and other useful 
information such as bond distances, ring types, planar and 
non-planar systems, atom types and molecular weight [25], 
molecular walk counts [26], 3D-MoRSE descriptors describ-
ing features such as molecular weight, van der Waals vol-
ume, electronegativities and polarizabilities [27], BCUT de-
scriptors representing connectivity information and atomic 
properties relevant to intermolecular interaction [28], WHIM 
descriptors describing size, shape, symmetry, atom distribu-
tion and polarizability of a molecule [29], Galvez topological 
charge indices and charge descriptors [30], GETAWAY de-
scriptors [31], 2D autocorrelations, functional groups, atom-
centred descriptors, aromaticity indices [32], Randic molecu-
lar profiles [33], electrotopological state descriptors [34], 
linear solvation energy relationship descriptors [35], and 
other empirical and molecular properties.  

METHODS FOR DEVELOPING REGRESSION 

MODELS 

 Various regression methods have been applied to QSAR 
and QSPR model construction. The most widely used meth-
ods include such conventional approaches as multiple linear 
regression and partial least squares and such recently ex-
plored approaches as genetic function approximation and 
machine learning methods (k-nearest neighbour, neural net-
works, and support vector regression). 

Multiple Linear Regression (MLR) 

 MLR [36] is one of the most commonly used and sim-
plest methods for constructing QSAR/QSPR models. A 
MLR model is constructed under the assumption that a linear 
relationship exists between a set of molecular descriptors of 
a compound (which is represented by a feature vector x with 
each descriptor as its component) and a specific activity 
(which is represented by a quantity y). A MLR model can be 
described using the following equation ŷ = 0 + 1X1+ ,

2X 2 +…+ kXk  where {X1, …, Xk} are molecular des-

criptors, 0 is the regression model constant, 1 to k are the 
coefficients for individual descriptor X1 to Xk. The values 
for 0 to k are chosen by minimizing the sum of squares of 
the residuals between the observed and predicted values de-
fined by the equation so as to give the best prediction of y

from x.

 The advantage of MLR is its simplistic form and easily 
interpretable mathematical expression. The sign of the coef-
ficients 1 to k indicates whether each molecular descriptor 
contributes positively or negatively to a specific activity and 
their magnitudes indicates the relative importance of each 
descriptor to that activity. However, MLR works well only 
when the structure-activity relationship is linear in nature, 
the set of molecular descriptors are mathematically inde-
pendent (orthogonal) of each another, and the number of 
compounds in the training set exceeds the number of mo-
lecular descriptors by at least a factor of five [37]. It has been 
found that, when collinear descriptors are used, the derived 
coefficients 1 to k tend to be larger than the real values 
and sometimes have opposite signs [15]. Therefore, the as-
sumption of a linear relationship between a set of molecular 
descriptors and a specific activity may not always be appro-
priate, especially in the cases involving multiple mecha-
nisms. 

Partial Least Squares (PLS) 

 PLS [38] constructs a QSAR or QSPR model by creating 
latent variables, xnew, which are molecular descriptors carry-
ing the same information as the original molecular descrip-
tors xoriginal, but fewer in numbers. PLS differentiates from 
principal component analysis (PCA) in that PLS finds latent 
variables from x that are also relevant for y. Specifically, 
PLS regression searches for a set of latent variables by per-
forming a simultaneous decomposition of x and y with the 
constraint that these latent variables explain the maximum 
covariance between x and y. This is different from PCA, 
which creates its scores by finding the linear combination of 
the explanatory variables x that have the maximum variance. 
These scores are not chosen optimally for a regression analy-
sis because the principal component scores have been chosen 
without even considering the activity variable y. An impor-
tant consideration in PLS is the selection of an appropriate 
number of latent variables for constructing a QSAR model. 
This is usually determined by using such cross-validation 
methods as 5-fold cross-validation and leave-one-out. 

Genetic Function Approximation (GFA) 

 GFA is a method which combines genetic algorithm 
(GA) [39] and multivariate adaptive regression splines 
(MARS) [40] algorithm to produce multiple QSAR/QSPR 
models [41]. An initial population of models are first created 
by randomly selecting some descriptors for building basis 
functions, which are functions of one or more descriptors, 
and developing QSAR/QSPR models from these basis func-
tions. These models are scored by using Friedman’s “lack of 
fit’ (LOF) measure, which is resistant to over-fitting prob-
lems better than the traditional least-squares error (LSE) 
measure. LOF is given by LOF = LSE / [1 (c + dp) /M ]2

where c is the number of basis functions, d is a smoothing 
parameter, p is the total number of descriptors contained in 
all basis functions and M is the total number of compounds 
in the training set. GA is then used to incrementally improve 
the LOF score of the models by selecting more relevant basis 
functions for building the models. At the end of the GA 
process, the model with the lowest LOF score can be se-
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lected as the final QSAR/QSPR model. Alternatively, a con-
sensus model can be built from the population of models.  

 GFA has several advantages over standard regression 
analysis. GFA is able to automatically select descriptors and 
combination of basis functions that are important for the 
models. In addition, it can provide additional information 
such as preferred model length and useful partitions of the 
datasets. 

k-Nearest Neighbour (kNN) 

 kNN is a basic instance-based method [42], which meas-
ures the Euclidean distance between a given compound (rep-
resented by a vector x) and each of the near neighbor com-
pounds in a training set (represented by a group of vectors 
{xi}) [42, 43]. The Euclidean distance between vector x and 

xi is computed by using the formula 2

iD = x x . The ac-

tivity of the studied compound is determined by the average 
of the activity values of a total of k number of training com-

pounds nearest to that compound y = ( yi
i=1

k

} / k .

Feedforward Back Propagation Neural Network 

(FFBPNN) 

 FFBPNN is a form of artificial neural network which has 
two distinct phases: forward propagation of activation and 
backward propagation of error [44]. It is composed of an 
input layer, a variable number of hidden layers and an output 
layer. The input and output layers contain neurons represent-
ing the molecular descriptors and activity value of a studied 
compound respectively. In a fully connected FFBPNN, each 
neuron in the input layer sends its value to all neurons in the 
first hidden layer. Each neuron in the hidden layers receives 
inputs from all neurons in the previous layer and computes a 
weighted sum of the inputs. The neuron output is determined 
by passing the weighted sum through a transfer function, 
which is usually a linear or sigmoidal function. The single 
neuron in the output layer determines the predicted activity 
value of a compound by computing a weighted sum of the 
outputs of all neurons in the last hidden layer. Weights for 
the connections between neurons in adjacent layers are ini-
tially randomly assigned. These weights are then refined via

a backward propagation of error process during training of 
the FFBPNN. In backpropagation learning, every time an 
input vector of a training sample is presented, the output 
vector is compared to the desired value by evaluating the 
squared difference Err = (Vdesired Voutput )

2 . The goal of back-

propagation is to gradually minimize the sum of Err,

Minimize Err = (Vdesired Voutput )
2 , for all the training sam-

ples to ensure that the network behave in the most desired 
way.  

 A difficulty in using FFBPNN is the construction of an 
optimal architecture for a given problem. An undersized 
network is not capable of generating an optimal QSAR or 
QSPR model, while an oversized network may lead to an 
over-fitted model. Moreover, the physicochemical basis of 
the connection weights of FFBPNN are not easily inter-

preted, which makes it difficult for medicinal chemists to 
rationally optimize the structures of active compounds based 
on a FFPBNN model. 

General Regression Neural Network 

 GRNN [45] is a form of neural network designed for 
regression through the use of Bayes’ optimal decision rule. 
In GRNN, the activity value of a studied compound is de-
rived from the most probable value sampled over the activity 
of all of the compounds in a training set, which is given by 

= ]),(/[]),([ dyyxfdyyxyfy  where f(x,y) is the joint 

density which can be estimated straightforwardly by using 

Parzen’s nonparametric estimator [46] g(x) = [ W ((x xi )
i=1

n

/ )] / n  where n is the sample size,  is a scaling parameter 

which defines the width of the bell curve that surrounds  
each compound, W(d) is a weight function which has its 
largest value at d = 0 and (x – xi) is the distance between  
a given compound and a compound in the training set.  
The Parzen’s nonparametric estimator was later expanded  
by Cacoullos [47] for the multivariate case, g(x

1
,…, x

p
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1

n
1
…

p
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x
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) The Gaussian function 

is frequently used as the weight function because it is well 
behaved, easily calculated and satisfies the conditions  
required by Parzen’s estimator. Thus the probability density 

function for the multivariate case becomes g(x) = . 1

n

exp(
x

j
x

j ,i

jj=1

p

i=1

n
2

) Substituting Parzen’s nonparametric 

estimator for f(x,y) and performing the integrations leads to 

the fundamental equation of GRNN y = , [ yi

i=1

n

 exp(-D(x,xi))]

/ [ exp(-D(x,xi ))]
i=1

n

where D(x, xi ) = (x j x ji ) / j
j=1

p 2

.

Support Vector Regression (SVR) 

 SVR is an extension of support vector machine (SVM) to 
solve nonlinear regression problems by introducing an -
insensitive loss function [48-50]. A kernel function (in the 
form of a polynomial, gaussian, or sigmoidal function) is 
used to map the input vectors into a higher dimensional fea-
ture space and then a linear regression model is conducted in 
this feature space. The quality of estimation is measured by 
the -insensitive loss function L(y, f (x, )) = 0  if | y

f (x, ) |  otherwise L(y, f (x, )) =| y f (x, ) | . The 

optimal regression function can be represented by  = 

( i i
*)K(xi , x) + b

i=1

nsv
under the conditions 0

i
,

i

* C

and (
i
+

i

*)
i=1

n

= 0 . Where  represents the predicted acti-
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vity value of a specific property, nsv is the number of sup-
port vectors, constant C determines the trade off between the 
flatness of function f and the amount up to which deviations 
larger than  are tolerated and K is the kernel function, nor-

mally Gaussian kernel function K(xi , x j ) = e (||x j xi ||
2 )/(2 2 )

is used. 

 Similar with other multivariate regression models, the 
generalization capability of SVR depends on proper selection 
of parameters C, , the kernel type and its parameters. Some 
strategies are needed for optimizing these factors to achieve 
best generalization capability. For instance, a too small C
value may lead to under-fitting and a too large C value may 
lead to over-fitting of the training data. A larger  value may 
lead to a higher number of support vectors. The selection of 
the kernel function and corresponding parameters is very 
important because they define the distribution of the training 
set samples in the high dimensional feature space [51].  

CURRENT APPLICATIONS OF REGRESSION 

METHODS 

 Table 1 summarises the performance of the commonly 
used regression methods for predicting compounds of vari-
ous pharmacodynamic, pharmacokinetic and toxicological 
properties. The majority of the QSAR/QSPR models have 
primarily been developed by using conventional regression 
methods such as MLR or PLS. It is highly likely that these 
regression methods have been used because of their simplic-
ity and because the derived models can be easily interpreted. 
The performance of these studies is primarily measured by 
the r2 value, which measures the explained variance between 
the computed activities and experimentally estimated activi-
ties. Moreover, q2 values and RMSE values are also fre-
quently computed to further evaluate the predictive capabil-
ity of these studies. The number of compounds in many of 
the studies listed in Table 1 is in the range of tens to hun-
dreds of compounds, which is significantly lower than the 
hundreds to thousands of compounds typically used in classi-
fication studies [52]. 

 The computed r2 values are in the range of 0.30 to 0.99 
with the majority concentrated in the range of 061 to 0.91. 
These results suggest that the regression methods surveyed 
here have certain level of capability for predicting the activ-
ity of compounds of different pharmacodynamic, pharma-
cokinetic and toxicological properties. In these studies, the r2

of models developed by using more recently explored re-
gression methods such as FFBPNN, GRNN or SVR appear 
to be higher than the corresponding values of models devel-
oped by using conventional regression methods. One likely 
reason for the higher r2 derived from these more recently 
explored regression methods is that these methods do not 
rely on the existence of a fixed relationship between a spe-
cific activity and the molecular descriptors of the studied 
compounds. This makes it possible to model compounds of 
complex relationships and thus improve the prediction capa-
bilities of the developed models. However, such added flexi-
bility makes the more recently explored regression methods 
more susceptible to overfitting problems than the conven- 

tional regression methods [53, 54]. Overfitted models appear 
to show good prediction performance for the training set but 
exhibit poor performance for compounds not in the training 
set. Hence proper validation of QSAR/QSPR models is im-
portant to ensure that the models are valid and has reasona-
bly good generalization capability. 

FREELY AVAILABLE ONLINE AND COMMERCIAL 
SOFTWARE FOR QSAR/QSPR MODELING 

 A number of commercial and free software are available 
for facilitating the development of QSAR/QSPR models. A 
particularly useful source for such software is the public 
web-servers: QSAR and Modelling Society (http://www. 
qsar.org) and Cheminformatics (http://www.cheminformatics. 
org). Some of the relevant software is based on a particular 
data analysis method while others include a number of data 
analysis methods. Moreover, some of the relevant software 
do not include molecular descriptor computing module, in 
which case such software or web-servers as DRAGON [17], 
Molconn-Z [22], MODEL [55], or VolSurf [23], can be used 
for deriving the needed molecular descriptors. 

CONCLUDING REMARKS 

 Evaluation of literature reported performances of com-
monly used regression methods in QSAR/QSPR studies 
shows that these methods consistently exhibit promising 
capability for predicting the activity of compounds of diverse 
ranges of structures and of a wide variety of pharmacody-
namic, pharmacokinetic, and toxicological properties. A 
summary of the characteristics of these methods is given in 
Table 2. Regression methods can be used for quantitative 
prediction of the activity levels of new compounds in cases 
that the activity data are available for a sufficient number of 
known compounds. These methods have the capacity for 
estimating the contribution of specific structural and phys-
icochemical features of the selected compounds to a particu-
lar property [56]. This capacity may be explored for probing 
the mechanism of action for a specific group of compounds 
that possess a particular property. 

 Development of new regression methods and exploration 
of those developed in other fields is highly useful for further 
advancement of QSAR/QSPR research. Several methods 
have recently been developed in other fields, which include 
kernel partial least squares (K-PLS) [57], hierarchical PLS 
(Hi-PLS) [58], orthogonal PLS (OPLS) [59], robust contin-
uum regression [60], and deepest regression [61]. These 
methods have been shown to be useful for the prediction of a 
wide variety of properties including the levels of moisture, 
oil, protein and starch in corn [57], output of a polymer proc-
essing plant [57], chaotic Mackey-Glass time-series [57], 
human signal detection performance monitoring [57], bind-
ing strength of ligand-protein complexes [62], wood chip dry 
content [59], X-ray analysis of hydrometallugical solutions 
[60], and Michaelis–Menten model of enzyme kinetics [63]. 
It is of interest to explore these and other new regression 
methods for developing QSAR/QSPR models that can cover 
a more diverse spectrum of compounds and are capable of 
describing a more extensive range of pharmacodynamic, 
pharmacokinetic and toxicological properties. 
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Table 1. QSAR Models for Pharmacodynamic, Pharmacokinetic and Toxicological Agents 

Property Method and Reference of  

Reported Study 

Number of  

Compounds 

Reported Prediction Statistics 

Antitrichomonal agents LDA [64] 196 r2 = 0.749 - 0.845 

Carbonic anhydrase inhibitors MLR and NN [65] 142 r2 = 0.921 - 0.943 (MLR) 

r2 = 0.971 - 0.992 (NN) 

MLR and NN [66] 273 r2 = 0.666 - 0.669 (MLR) 

r2 = 0.719 - 0.883 (NN) 

SVR [67] 53 r2 = 0.869 

MLR [68] 16 r2= 0.9839 

COX-2 inhibitors 

PLS, NN  [69] 322 q2=0.52 (PLS) 

q2=0.53 (NN) 

LSSVM [70] 45 r2 = 0.8696 1,4-dihydropyridine calcium channel antagonists 

GEP and HM [71] 45 r2= 0.88 – 0.93 (GEP) 

r2= 0.86 – 0.91 (HM) 

MLR [68] 58 r2 = 0.9398 Angiotensin-converting enzyme (ACE) inhibi-

tors 
PLS, NN  [69] 114 q2=0.72 (PLS), q2=0.72 (NN) 

Acetylcholinesterase (AChE) inhibitors PLS, NN  [69] 111 q2=0.30 (PLS), q2=0.45 (NN) 

Benzodiazepine receptor binders PLS, NN  [69] 163 q2=0.34 (PLS), q2=0.35 (NN) 

Dihydrofolate reductase inhibitors (DHFR) PLS, NN  [69] 397 q2=0.52 (PLS), q2=0.61 (NN) 

Glycogen phosphorylase b (GPB) inhibitors PLS, NN  [69] 66 q2=0.42 (PLS), q2=0.48 (NN) 

Thermolysin inhibitors (THER) PLS, NN  [69] 76 q2=0.65 (PLS), q2=0.64 (NN) 

Thrombin inhibitors PLS, NN  [69] 88 q2=0.45 (PLS), q2=0.64 (NN) 

Protein Tyrosine Phosphatase 1B  Inhibitors MLR  [72] 128 r2 =0.859 

Na+/H+ antiporter inhibitors MLR and NN [73] 113 RMSE= 0.473 - 0.546 (MLR) 

RMSE= 0.228 - 0.296 (NN) 

Human type 1 5alpha-reductase inhibitors NN [74] 93 r2= 0.89 - 0.97 

Murine and human soluble epoxide hydrolase 

inhibition by urea-like compounds 

NN [75] 348 r2= 0.61 - 0.66 

PLS [76] 48 r2=0.91, q2=0.84 HIV-1 protease inhibitors 

MLR, PLS [77] 35 r2=0.763 – 0.798, q2=0.703 -0.741 

(MLR)  

r2=0.865 (PLS)  

MLR [78] 93 r2=0.951 

MLR [79] 79 r2=0.834 

CCR5 receptor binders 

MLR [80] 52 r2=0.837 

Glycogen synthase kinase-3 inhibitors MLR and ANN [81] 277 r2= 0.507 - 0.896 (MLR) 

r2= 0.679 - 0.782 (ANN) 

Platelet-derived growth factor inhibitors MLR and ANN [82] 78 - 123 r2= 0.684 - 0.698 (MLR) 

r2= 0.71 - 0.81 (ANN) 
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(Table 1. Contd….) 

Property Method and Reference of  

Reported Study 

Number of  

Compounds 

Reported Prediction Statistics 

Artemisinin analogues NN [83] 179 r2= 0.88 – 0.96  

PDGFR inhibition NN [84] 79 r2= 0.61 - 0.93 

 LS-SVM [70] 45 r2=0.817 

BPNN [85] 439 r2= 0.76 

SVR, PLS and RF [86] 90 r2= 0.849 – 0.912 (SVR) 
r2= 0.753 – 0.882 (PLS) 
r2= 0.785 – 0.889 (RF) 

MLR [87] 104 r2= 0.636 – 0.704 

RP [88] 134 r2= 0.83  

hERG channel inhibitors 

PLS  [89] 348-544 r2=0.76-0.77 

KNN [90] 61-68 r2 =0.69-0.79 

Estrogen Receptor binders 
PLS [91] 40-44 r2 =0.45-0.96 

MLR, RBFNN, SVR [92] 146 RMS = 0.76 (MLR) 
RMS = 0.69 (RBFNN) 

RMS = 0.55 (SVR) 

Human Androgen Receptor binders 

PLS [93] 70 r2 =0.66 

LS-SVM [70]  45 r2 =0.82 

ANN  [94] 110 r2=0.93 – 0.94 

Calcium Channel Antagonists 

PCANN, MLR  [95]  46 r2=0.55 (MLR) 

r2=0.73 (PCANN) 

Potassium channel openers PLS [96] 27 r2=0.94 

Dopamine Antagonists PLS, kNN  [97] 29 r2=0.73 (PLS) 

r2=0.79 (kNN) 

Platelet aggregation inhibitor MLR  [98] 35 r2=0.74 

Skin permeation MLR, ANN [99] 143 r2=0.804 – 0.919(MLR) 

r2=0.72 – 0.813 (ANN) 

Human and rat steady-state volume of distribu-
tion 

BNN, CART and PLS [100] 199 – 2086 Human: r2=0.560 – 0.794 (BNN), 
r2=0.573 – 0.876 (CART), r2=0.587 – 

0.641 (PLS) 

Rat: r2=0.527 – 0.767 (BNN), r2=0.470 
– 0.846 (CART), r2=0.463 – 0.519 

(PLS) 

Human oral absorption SVR [101] 169 r2=0.70 – 0.86 

MLR [102, 103] 169 – 467 r2=0.79 – 0.82 

Sigmoidal [104] 20 r2=0.94 

PLS [105, 106] 79 – 169 r2=0.55 – 0.921 

ANN [107-109] 77 – 581 r2=0.80 – 0.92 

GRNN [110] 77 RMSE=6.5 

CART [111] 899 AAE=0.120 – 0.200 

PLS [112, 113] 20 r2=0.903 

Human intestine absorption 

SVR [114] 20 r2=0.779 – 0.877 
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(Table 1. Contd….) 

Property Method and Reference of  

Reported Study 

Number of  

Compounds 

Reported Prediction Statistics 

ML [115] 591 r2=0.71 

MLR [116] 169 r2=0.72 

ANN [117] 152 r2=0.736 

Bioavailability 

NN [118] 28 q2=0.90 

MLR [119-137] 20 - 150 r2=0.56 - 0.95 

PLS [138] 86 r2=0.89 

PCR [139, 140] 75 - 100 r2=0.576 - 0.83 

PLS [106, 113, 141-145] 56 - 97 r2=0.617 - 0.910 

NN [118] 36 q2=0.88 

BNN [146] 106 r2=0.76 

GRNN [147] 159 r2=0.701 

Blood Brain Barrier penetration 

SVR [114] 59 r2=0.82 – 0.85 

MLR [148, 149] 94 r2=0.68 - 0.88 

GRNN [147] 93 r2=0.851 

HSA binding 

SVR [150] 94 r2=0.89 - 0.94 

ANN [151] 123 r2=0.61 Milk-plasma ratio 

GRNN [147] 122 r2=0.677 

kNN [152] 38 r2=0.94 

ANN [153] 6 r2=0.731 

Total clearance 

GRNN [154] 23 r2=0.775  

P-gp inhibitor PLS [155] 100 r2=0.731 

NN [156] 82 r2= 0.871 

MLR [157] 95 r2=0.70 

Genotoxicity 

MLR [158] 29 r2=0.44 

Toxicity to Vibrio fischeri MLR [159] 56 r2= 0.820 – 0.865 

Hepatotoxicity LR, MLR [160] 15-28 r2=0.801 (LR) 

r2=0.561 – 0.892 (MLR) 

MLR [161] 92 r2= 0.738 – 0.885 Aquatic toxicology 

CPNN [162] 282 r2=0.79 

MLR [163] 42 r2= 0.823 – 0.831 

MLR [164-166] 7-64 r2=0.59 – 0.95 

Cytotoxicity 

MLR [167] 29 r2= 0.87 – 0.89 

MLR [168] 40 r2= 0.821 – 0.831 

PLS [169] 476 r2= 0.801-0.826 

NN,GAM,MARS,PPR [170] 203 r2= 0.73 (NN) 

r2= 0.61 – 0.75 (GAM) 

r2= 0.73 – 0.74 (MARS) 

r2= 0.71 – 0.80 (PPR) 

Tetrahymena pyriformis toxicity 

PNN [171] 1084 r2= 0.8033 - 0.8989  
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Property Method and Reference of  

Reported Study 

Number of  

Compounds 

Reported Prediction Statistics 

CPNN [172] 541 r2= 0.861 – 0.93  Toxicity in fish fathead minnow 

MLR [173] 408 r2= 0.803– 0.922 

Toxicity of chlorophenols  CoMFA [174] 10 r2= 0.727 – 0.968  

Toxicity to rainbow trout Onchorhyncus mykiss 

Walbaum

MLR, PLS [175] 75 q2= 0.75 -0.78 (MLR) 

q2= 0.80 (PLS) 

General toxic chemicals MLR, RBFNN, SVR [176] 76 r2=0.85 (MLR) 

r2=0.88 (RBFNN) 

r2=0.95 (SVR) 

Abbreviations: 

hERG: human ether-a-go-go-related gene; MLR: multiple linear regressions; PLS: partial least squares; kNN: k nearest neighbors; PCA: principal component analysis; SVR: sup-
port vector regression; LS-SVM: least square support vector machine;  ANN: artificial neural network; BPNN: back-propagation neural network; BNN: Bayesian neural networks; 
RBFNN: radial basis function neural network; GRNN: generalized regression neural network; CPNN: counter propagation neural network model; HCA: hierarchical cluster analysis; 
PCRA: principal component regression analysis; GEP: gene expression programming; HM: heuristic method; GA-MLR: multiple linear regressions combined with genetic algo-
rithm; RF: random forests; RP: recursive partitioning; PPR: projection pursuit regression; GAM: generalized additive model; MARS: multivariate adaptive regression splines; 
CART: classification and regression trees; CoMFA: comparative molecular field analysis. 

Table 2. Characteristics of the Various Regression Methods 

Regression 

Methods 

Dataset Descriptors Model 

MLR - Single mechanism of action 

- One target property 

- Should not have intercorrelation 

- Total number must not exceed one-fifth of 

the number of compounds in training set 

- No optimizable parameter 

- Fast training speed 

- Fast prediction speed 

- Easy to interpret 

- Low risk of overfitting 

PLS - Can have multiple mechanism of 

action (if non-linear extensions 

such as quadratic PLS, spline PLS, 

GIFI-PLS, are used) 

- Can have multiple target proper-

ties 

- Can have intercorrelation 

- No restriction on the total number used 

- One optimizable parameter 

- Fast training speed 

- Fast prediction speed 

- Low risk of overfitting 

GFA - Can have multiple mechanism of 

action 

- One target property 

- Can have intercorrelation 

- Total number used restricted by LOF statis-

tics 

- Multiple optimizable parameters 

- Slow training speed 

- Fast prediction speed 

- Easy to interpret 

- Low risk of overfitting 

kNN - Can have multiple mechanism of 

action 

- Can have multiple target proper-

ties 

- Can have intercorrelation 

- No restriction on the total number used 

- One optimizable parameter 

- Fast training speed 

- Prediction speed may be slow with large 

training sets 

- Difficult to interpret 

- Risk of overfitting 

FFBPNN - Can have multiple mechanism of 

action 

- Can have multiple target proper-

ties 

- Can have intercorrelation 

- No restriction on the total number used 

- Multiple optimizable parameters 

- Slow training speed 

- Fast prediction speed 

- Difficult to interpret 

- Risk of overfitting 

- Non-uniqueness 
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Regression 

Methods 

Dataset Descriptors Model 

GRNN - Can have multiple mechanism of 

action 

- Can have multiple target proper-

ties 

- Can have intercorrelation 

- No restriction on the total number used 

- One optimizable parameter 

- Fast training speed 

- Prediction speed may be slow with large 

training sets 

- Difficult to interpret 

- Risk of overfitting 

SVR - Can have multiple mechanism of 

action 

- One target property 

- Can have intercorrelation 

- No restriction on the total number used 

- Multiple optimizable parameters 

- Training speed may be slow with large 

training sets 

- Prediction speed may be slow 

- Difficult to interpret 

- Low risk of overfitting 
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